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ABSTRACT: Accumulating evidence suggests that reversible protein
acetylation may be a major regulatory mechanism that rivals phos-
phorylation. With the recent cataloging of thousands of acetylation
sites on hundreds of proteins comes the challenge of identifying the
acetyltransferases and deacetylases that regulate acetylation levels.
Sirtuins are a conserved family of NADþ-dependent protein deace-
tylases that are implicated in genome maintenance, metabolism, cell
survival, and lifespan. SIRT3 is the dominant protein deacetylase in
mitochondria, and emerging evidence suggests that SIRT3 may
control major pathways by deacetylation of central metabolic enzymes.
Here, to identify potential SIRT3 substrates, we have developed an
unbiased screening strategy that involves a novel acetyl-lysine analogue (thiotrifluoroacetyl-lysine), SPOT-peptide libraries,
machine learning, and kinetic validation. SPOT peptide libraries based on known and potential mitochondrial acetyl-lysine sites
were screened for SIRT3 binding and then analyzed using machine learning to establish binding trends. These trends were then
applied to the mitochondrial proteome as a whole to predict binding affinity of all lysine sites within human mitochondria. Machine
learning prediction of SIRT3 binding correlated with steady-state kinetic kcat/Km values for 24 acetyl-lysine peptides that possessed a
broad range of predicted binding. Thus, SPOT peptide-binding screens and machine learning prediction provides an accurate and
efficient method to evaluate sirtuin substrate specificity from a relatively small learning set. These analyses suggest potential SIRT3
substrates involved in several metabolic pathways such as the urea cycle, ATP synthesis, and fatty acid oxidation.

Accumulating evidence suggests that reversible protein acet-
ylation, which was historically reserved for histone proteins,

may be a major regulatory mechanism that controls the functions
of nonhistone proteins. With the recent cataloging of ∼1000
acetylation sites on protein lysine residues1-3 comes the chal-
lenge of assigning functional roles to specific acetylation sites,
identifying the acetyltransferases and deacetylases that regulate
acetylation levels, and elucidating the physiological cause and
effect of specific lysine acetylation sites. Sirtuins (or Sir2-like
proteins) are a conserved family of NADþ-dependent protein
deacetylases that are implicated in genome maintenance, meta-
bolism, cell survival, and lifespan.4,5 The NADþ-dependence
of the sirtuin reaction suggests that specific protein deacetylation
is inextricably linked to metabolism, redox control, and energy
status. The observation that the seven mammalian sirtuins
(SIRT1-7) display distinct subcellular localization further sup-
ports the hypothesis that many, if not most, targets of mamma-
lian sirtuins are nonhistone proteins.

Recent mass spectrometry studies revealed the widespread
occurrence of acetylated proteins within mitochondria, as greater
than 20% of all mitochondrial proteins are acetylated on at least
one lysine residue.1-3 Mitochondria are central to cellular metabo-
lism, and mitochondrial dysfunction has been linked to neuro-
degeneration, diabetes, heart disease, and other age-related diseases.6

Understanding the role and function of mitochondrial regulation

by reversible protein acetylation could lead to the better under-
standing of metabolic function and disease etiology. In humans,
SIRT3, SIRT4, and SIRT5 are localized to mitochondria. Among
these sirtuins, only SIRT3 displays robust deacetylation activity.7

Polymorphisms in human SIRT3 have been linked to survivor-
ship among the elderly,8,9 suggesting a possible involvement of
SIRT3 in age-related phenomena. The observation that caloric
restriction (CR) leads to increases in both transcription and
protein levels of SIRT310 suggests a positive effect of SIRT3
activity on parameters that influence aging. CR is the only known
environmental intervention that strongly increases maximum life
span and retards aging in mammals.11 Hints to the role of SIRT3
in metabolic regulation have come from several recent studies.
SIRT3 deacetylates and activates mitochondrial acetyl-CoA
synthetase 2 (ACS2).12,13 Other reports have suggested that
SIRT3 deacetylates and activates complex I of the mitochondrial
electron transport chain14 as well as isocitrate, glutamate, and
succinate dehydrogenases.15,16 SIRT3-deficient mouse embryo-
nic fibroblasts and tissues show lower ATP levels, with basal
levels of ATP in the heart, kidney, and liver reduced by >50%.14

SIRT3 also physically interacts with at least one of the known
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subunits of Complex I, the 39-kDa protein NDUFA9, and
functional studies demonstrate that mitochondria from SIRT3-
deficient animals display a selective inhibition of Complex I acti-
vity.14 SIRT3 may modulate mitochondrial function and meta-
bolism in response to metabolic stress. Consistent with this idea,
SIRT3 expression in cardiomyocytes is increased under stress,
and plays a protective role by preventing Bax-mediated apopto-
sis.17 Also, under prolonged fasting, SIRT3-deficientmice display
defects in fatty-acid oxidation.18

To provide an understanding for the molecular basis of SIRT3
function in mitochondria, it is critical that the protein targets and
specific lysine deacetylation sites are determined. Unfortunately,
in only a few cases have the functional lysines targeted by SIRT3
deacetylation been identified (i.e., acetyl-CoA synthetase 2,12,13

cyclophilin D,19 long-chain acyl coenzyme A dehydrogenase18).
More generally, it will be essential to match functionally im-
portant acetylation sites to the enzymes responsible for adding
and removing these modifications. Here, to identify potential
substrates and understand the pathways controlled by sirtuins,
we have developed an unbiased screening strategy that involves a
novel acetyl-lysine analogue, SPOT-peptide libraries, machine
learning, and kinetic validation.We demonstrate the utility of this
novel screening and validation approach using the mitochondrial
sirtuin SIRT3.

’RESULTS AND DISCUSSION

General Design of SPOT Libraries. To systematically inves-
tigate potential sirtuin substrates within a given proteome, we
turned to SPOT synthesis,20,21 which has recently been utilized
The SPOT technique involves the synthesis of peptides cova-
lently attached via their C-terminus to amine-modified cellulose

membranes (Figure 1). The hydrophilic nature of cellulose
minimizes nonspecific binding compared to libraries constructed
on hydrophobic polystyrene beads or other surfaces. Because
peptides are synthesized in a spatially addressed and parallel
manner, SPOT libraries do not require separate sequencing and
purification steps to identify queried peptide sequences. The use
of SPOT libraries also allows direct quantitation of relative
peptide binding affinity.
Here, we utilized SPOT peptide libraries to measure the

relative binding affinity of the mitochondrial sirtuin, SIRT3,
the major protein deacetylase present in the mitochondria.7

Focusing on the mitochondrial proteome of ∼1000 proteins25

provided a more manageable data set to explore substrate
specificity. The overall strategy is as follows: SIRT3 is incubated
with the SPOT membrane and binds preferentially to peptides
with the highest affinity (Figure 1). The amount of bound SIRT3,
which is proportional to the affinity for each peptide, is then
determined utilizing a SIRT3-specific antibody. The SIRT3
primary antibody is detected with HRP-conjugated rabbit IgG
secondary antibody. The spots are then visualized, the resulting
luminescence is quantified with an imaging camera and software
(Figure 1), and the peptide binding preferences are analyzed.
Design of SPOT Libraries: Acetyl-lysine Analogues. The

SPOT library design required optimization of several parameters
including peptide length, evaluated sequences, and affinity of the
central lysine residue. To minimize nonspecific binding and the
amount of SIRT3 required for the binding assays, we developed a
novel acetyl-lysine analogue that binds to sirtuins tighter than any
acetyl-lysine analogue previously tested. Previously, wemeasured
the binding of 10 acetyl-lysine analogue containing peptides to
the yeast sirtuin homologue, Hst2, and found that thioacetyl-,
trifluoroacetyl-, or propionyl-lysine containing peptides bound

Figure 1. Schematic of SIRT3 binding assay to the SPOT library cellulose membranes. Each individual spot within the SPOT libraries is a 9-mer with
four randomized residues proximal to a central thiotrifluoroacetyl-lysine residue and C-terminal covalent attachment to amine-modified cellulose
membranes.
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significantly tighter than the corresponding acetyl-lysine contain-
ing peptide.26 These findings led us to synthesize the thiotri-
fluoroacetyl- and pentafluoropropionyl-lysine peptides (Scheme
S1; Supplemental Methods) to discover tighter binding acetyl-
lysine analogue peptides.
To determine the binding constants of acetyl-lysine analogue

containing peptides to SIRT3, a fluorescein-labeled thiotrifluor-
oacetyl-lysine peptide based on the peptide sequence of the
known SIRT3 substrate acetyl-CoA synthetase 2 (fluorescein-
LPKTRSGK(CSCF3)VMRR-OH; Fluor-ACS2) was synthesi-
zed.12,13 Fluorescence polarization measurements yielded a Kd

value of 1.7( 0.3μM for direct binding of Fluor-ACS2 to SIRT3,
which was similar to the Kd value of 0.9( 0.2 μMdetermined by
isothermal titration calorimetry (ITC). Subsequently, using
Fluor-ACS2 in a competitive fluorescence polarization assay,
the Kd values were determined for various acetyl-lysine analogue
peptides based on the human histone H3 sequence modified at
Lys-14 (H2N-KSTGGK(acetyl analogue)APRKQ-OH) (Sup-
plemental Figure S1, Table 1). To establish binding trends, the
yeast sirtuin Hst2 was also evaluated26-28 (Table 1, Supple-
mental Figure S1).
The thioamide and trifluoromethyl group within the acetyl-

lysine analogues provided independent but additive binding
effects. The thioacetyl- and trifluoroacetyl-lysine peptide bound
SIRT3 9.3-fold and 1.7-fold tighter than the corresponding
acetyl-lysine peptide (Table 1, Supplemental Figure S2). There-
fore, we expected the thiotrifluoroacetyl-lysine peptide would
bind 15.8-fold (Kd ≈ 4.9 μM) tighter to SIRT3 compared to
the acetyl-lysine peptide. Indeed, we observed a Kd value of 5.9
μM for thiotrifluoroacetyl-lysine peptide binding to SIRT3.
Using the same analysis for Hst2, the thiotrifluoroacetyl-lysine

peptide was predicted to bind 28.4-fold tighter (Kd ≈ 0.7 μM)
to Hst2, and a Kd value of 1.0 μM was observed, suggesting
thiotrifluoroacetyl-lysine peptides are general tight-binding
sirtuin probes.
Fluorination of the propionyl group to form the pentafluor-

opropionyl analogue also behaved as predicted for both SIRT3
and Hst2 binding. In particular, the propionyl- and trifluoroace-
tyl-lysine peptides bound SIRT3 1.55-fold and 1.7-fold tighter
than the corresponding acetyl-lysine peptide. Therefore, we pre-
dicted that the pentafluoropropionyl-lysine peptide would bind
2.65-fold tighter (Kd ≈ 29.1 μM) to SIRT3 compared to the
acetyl-lysine peptide, and we observed a Kd value of 29.2 μM
(Table 1, Supplemental Figure S2). For Hst2, pentafluoropro-
pionyl-lysine peptide was predicted to bind 15.5-fold (Kd≈ 1.35
μM) tighter to Hst2, and we observed a Kd value of 0.95 μM.
Unlike the thiotrifluoroacetyl analogue, which exhibited similar
fold improvements in SIRT3 andHst2, the pentafluoropropionyl
analogue exhibited a significantly greater improvement in Hst2
binding compared to SIRT3 binding. We recently reported that
propionyl- and acetyl-lysine peptides exhibited similar overall
turnover rates with Hst2; however, significantly slower turnover
rates were observed for propionyl- compared to acetyl-lysine
peptides with SIRT3.26 Therefore, the pentafluoropropionyl
moiety is likely well accommodated in the Hst2 active site but
not in the SIRT3 active site, whereas the thiotrifluoroacetyl moiety
is well accommodated in both active sites. As the thiotrifluor-
oacetyl-lysine analogue displayed general tight binding to both
SIRT3 and Hst2, this analogue was used in subsequent SPOT
library screens.
Design of SPOT Library: Peptide Length. Another impor-

tant consideration in the design of the SPOT libraries was the
length of peptides. For maximal effectiveness of the method, the
peptides should be short enough to ensure synthetic integrity but
long enough to achieve high binding affinity and discrimination
among library members. To this end, we synthesized control
SPOT libraries containing thiotrifluoroacetyl-lysine surrounded
by peptide sequences based on the general in vitro sirtuin
substrate lysine-14 of histone H3,26,29 the SIRT1 substrate
p53,30-33 the SIRT2 substrate R-tubulin,32 the SIRT3 substrate
acetyl-CoA synthetase 2,12,13 and the SIRT6 substrate lysine-9 of
histone H3.34 In these control libraries, peptides longer than nine
amino acids did not result in increased SIRT3binding (Supplemental
Figure S3).
We also examined published sirtuin crystal structures in which

acetyl-lysine containing peptides were bound in the acetyl-lysine
binding pocket.35-43 In these structures, ordered residues were
only reported for up to four residues N- or C-terminal to acetyl-
lysine despite using peptides of length 8-18 amino acids in the
crystallization conditions. This suggests that the majority of
specific interactions in the sirtuin acetyl-lysine substrate bind-
ing pocket occur within the four residues immediately N- and
C-terminal to acetyl-lysine.
A recent bioinformatics study reported acetylationmotifs from

the computational analysis of existing proteomic acetyl-lysine
data sets.44 Although seven N- and C-terminal residues were
utilized in training data sets, only the immediate N-terminal
residue and four C-terminal residues revealed motifs that were
statistically correlated with acetylation.
Finally, the only previous example of machine learning analysis

of SPOT libraries, which identified novel antimicrobial peptides,
utilized 9-mer peptides.45,46 For the above four reasons, we
utilized 9-mer peptides in our SPOT libraries with four amino

Table 1. Binding constants of various acetyl-lysine analogue
peptides to SIRT3 and Hst2

1Determined via competitive fluorescence polarization assays. 2De-
termined by isothermal titration calorimetry. 3This work. 4Refer-
ence 28. 5Reference 27.
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acids N- and C-terminal to the central thiotrifluoroacetyl-lysine
residue (Figure 1).
Design of SPOT Library: Peptide Sequences. As there are

25.6 billion possible sequences for the 20 natural amino acids at
eight randomized positions, screening every possible sequence
was impractical. As SIRT3 is localized to the mitochondria,47-50

the sequence space can be narrowed significantly by focusing on
the mitochondrial proteome. Even this yields ∼22,000 possible
9-mer sequences with a central lysine. Therefore, to provide the
greatest coverage of the relevant sequence space, we utilized two
distinct libraries. One SPOT library focused on known acetyla-
tion sites within the mitochondria and contained the human
sequences of acetylated peptides from a recent acetyl proteomics
screen (229 peptides).1 As all acetyl proteomic studies have
relied on the ability of anti acetyl-lysine antibodies to enrich for
acetylated peptides in tryptic digests, known acetylation sites are
potentially biased toward both the specificity of antibodies as well
as the length of peptides required for efficient mass spectral seq-
uencing. Tominimize any bias, the other SPOT library contained
300 randomly sampled lysine-centered 9-mers from the mito-
chondrial proteome, independent of evidence for acetylation.
Screening of SPOT Libraries for SIRT3 binding. After

identification and validation of the proper acetyl-lysine analogue,
peptide length, and peptide sequences to be utilized, we screened
the resulting SPOT libraries for their ability to bind SIRT3. Each
library was synthesized in triplicate, screened with SIRT3 and the
resulting integrated optical density (IOD) binding scores were
averaged to reduce measurement noise and improve the training
signal for themachine learningmodel (see below). A representative
SIRT3 library screen of 300 randomly sampled lysine-centered
9-mers from the mitochondrial proteome is shown in Figure 2.
These screens exhibited a wide range of binding affinity from high
intensity spots representing high affinity peptides to spots with
background signal intensity. The identical procedure performed in
the absence of SIRT3 revealed no binding above background for
both libraries (data not shown), which indicated that the observed
SIRT3 binding to the membrane in Figure 2 was not the result of
nondirected antibody binding.
Machine Learning of SIRT3 BindingAffinity. Asmentioned

above, testing all 22,000 mitochondrial lysine centered 9-mer
sequences was impractical, so we developed a method to model
and predict SIRT3 binding for sequences not examined in the
SPOT libraries. Machine learning was recently used in the
identification of novel antibacterial peptides from SPOT librar-
ies.45,46 Tomodel binding affinity for peptide sequences, we used
a linear regression approach that was trained using the IOD
scores from our SPOT library screens and predicted IOD scores
for other peptides not present in our libraries. This method
(described below) induces a model by treating a peptide’s IOD
score as a linear function of various molecular properties. It per-
formed as well or better than other machine learning algorithms
we investigated (e.g., artificial neural networks, Gaussian pro-
cesses, and decision trees). Linear regression has the added advan-
tage of easily interpretable model parameters (i.e., the coeffi-
cients of the learned function).
To represent peptides for the machine learning algorithm, the

amino acids at the eight variable positions of each peptide were
represented as binary variables. For example, the sequence
IINQKRFND has value 1 for Ile at the -4 position and Arg at
the þ1 position, and value 0 for all other amino acids at those
positions, resulting in 8� 20 = 160 total individual residue features.
Additionally, we used 10 global chemical properties to describe

each peptide. These global properties were hydrophobicity;51

flexibility;52 conformational tendencies for R helix, β strand,
β turn, and coil;53 average area buried on transfer to folded pro-
tein;54 and accessibility.55 We desired to separate the conforma-
tional preferences for parallel and antiparallel β strands, so we
also included a separate scale for these preferences.56 These
scales provide values for individual amino acids, and thus we took
the average value across all residues in a sequence to produce a
real-numbered value for each peptide as a whole. We then
normalized the input value for each scale feature to be in the
range from 0 to 1. This simple normalization allowed us to better
compare the relative contribution of each scale’s parameter
weight in the analysis of our learned model.
To fit the parameters of our model, we used least-squares

regression. However, we found that the common approach of
computing the coefficients in closed form led to significant
“overfitting,” which occurs when a statistical model represents
spurious correlations and noise in the training signal rather than
an actual underlying relationship between the input and output
variables. This sometimes occurs in machine learning when the
model has too many degrees of freedom relative to the amount of
training data available, which is likely the case in our study with
170 input features and 529 training sequences.
To remedy this, we implemented a gradient-based numerical

optimization approach based on the L-BFGS algorithm,57 which
finds the least-squares solution iteratively, and we employed
“early stopping” to prevent overfitting.58 Specifically, we halt the
training process once the reduction in estimated squared error

Figure 2. Binding of SIRT3 to a SPOT library of 300 lysine-centered
9-mer peptides randomly selected from the mitochondrial proteome. A
representative SPOT library is shown with SIRT3. Performing the same
procedure without SIRT3 gave no signal above background (data not
shown). SPOT library screens were performed as described underMethods.
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falls below 0.001. One could also use other forms of parameter
regularization59 to maintain predictive accuracy on novel pep-
tides, but we found early stopping to be sufficient. A more
detailed discussion of this method, and a comparison to other
machine learning approaches we investigated will be discussed
elsewhere (manuscript in preparation). We also plan to publicly
release a software tool that implements our feature generation
and model training for the research community at large.
Parameter weights for the trained machine learning model of

SIRT3 substrate specificity are presented in Figure 3. The
sequence logo representation in Figure 3, top panel illustrates
the relative contribution of residues at specific positions sur-
rounding the central lysine to SIRT3 substrate specificity. Residues
above the baseline suggest positive correlation with SIRT3 binding
specificity, whereas residues below the baseline suggest nega-
tively correlated relationships, and larger characters suggest
greater relative impact on binding. We emphasize that these
coefficients do not reflect relative frequency of each residue in the
libraries (which is the interpretation for some other sequence
logos in the literature), but rather how discriminative they are in
predicting high or low binding affinity, in terms of IOD score.
The bar chart in Figure 3, bottom panel illustrates the analogous
relationship between global parameters and SIRT3 substrate

specificity. Again, positive weights suggest positive correlation
with measured SIRT3 binding affinity, and negative weights indi-
cate negatively correlated relationships, and the magnitude of
each weight indicates its relative impact on SIRT3 binding.
To evaluate the predictive accuracy of our model, we con-

ducted a cross-validation study using the 529 peptide measure-
ments from our SPOT libraries. For each peptide, this involved
training a model using the remaining 528 sequences and
predicting a binding score for the single held-out peptide. This
procedure is repeated for every sequence in the library, allowing
us to fairly estimate how well the model can predict binding on
the SPOT membrane for sequences for which it was not trained.
The Pearson correlation between predicted scores and the actual
IOD measurements is R2 = 0.54, indicating that our model
predictions can explain over half of the observed variance in
actual IOD measurements from SPOT array screenings.
Machine Learning Prediction of SIRT3 Substrate Specifi-

city Across the Mitochondrial Proteome. A significant ad-
vantage of our machine learning model is the ability to predict
SIRT3 substrate specificity for sequences not present among the
original 529 peptides tested in our SPOT libraries. To this end,
we used the MitoCarta human inventory of ∼1000 mitochon-
drial proteins25 to generate a list of ∼22,000 lysine-centered
9-mers as potential SIRT3 binding sites. We then generated
residue and global scale features for these peptide sequences and
predicted their binding affinities using the learned model de-
scribed above. We have included these predictions in Supple-
mental Table 2. This table has also been annotated with known
acetylation sites from the acetyl-lysine proteomics by Kim et al.,
Choudhary et al., and Zhao et al.1-3 Since the acetylation sites
discovered in these proteomics screens likely represent a subset
of the acetyl-lysine sites present in mitochondria, we have also
annotated the spreadsheet with the result of an online acetylation
prediction algorithm (phosida.com).
Validation of SPOT Library Screening andMachine Learn-

ing. Implicit in the machine learning model is the hypothesis
that binding correlates with substrate specificity in deacetylation
assays. This may not be the case as some peptides may bind
outside the active site and potentially uncover other relevant
protein:protein interaction sites. However, we have purposely
tried to minimize the contribution of binding outside the active
site through engineering a tight binding acetyl-lysine analogue
(thiotrifluoroacetyl-lysine) that should result in increased bind-
ing to only the SIRT3 active site and not other potential binding
sites.
To evaluate the results from the SPOT libraries and the

machine learning prediction of SIRT3 substrate specificity, we
synthesized the acetyl-lysine versions of sequences with a wide
variety of both experimentally tested (11 peptides) and predicted
(13 peptides) binding affinities and measured their steady-state
kinetic kcat/Km values with SIRT3 using our previously published
continuous sirtuin assay.60 While not the most sensitive sirtuin
assay, this assay was an excellent choice to rapidly evaluate the
steady-state kcat/Km values among a large diverse group of peptide
substrates for SIRT3. The measured kcat/Km values varied∼300-
fold over the range of peptides tested. To evaluate the correlation
of the results, we plotted our measured IOD scores versus of the
log kcat/Km values.61,62 The IOD scores reflect the relative bind-
ing affinity of SIRT3 toward each thiotrifluoracetylated SPOT
peptide. The kcat/Km parameter is the apparent second order rate
constant between SIRT3 and free, acetylated peptide. This
steady-state constant reflects both the affinity for substrate and

Figure 3. (Top) Sequence logos illustrating learned linear regression
weights for the position-specific residue features. The height of each
residue is proportional to the coefficient used by the model in predicting
SIRT3 binding specificity. Positively correlated residue positions are
shown above the baseline, and negatively correlated resides are below.
(Bottom) Global feature model parameters. A bar chart illustrating
learned linear regression weights for the global peptide scale features.
Positive values suggest that the corresponding chemical property (e.g.,
hydrophobicity) or secondary structure (e.g., antiparallel strand) is
positively correlated with SIRT3 binding specificity. Negative values
likewise suggest a negatively correlated residues.
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the efficiency of deacetylation. Therefore, evaluation of the correla-
tion between IOD scores and kcat/Km values was critical as the
SPOT libraries may have selected for peptides that bind to the
active site in a conformation that did not allow for efficient
deacetylation. This analysis revealed a fairly strong linear correla-
tion (R2 value of 0.37, p = 0.047) of binding affinity of thiotri-
fluoroacetyl-lysine containing peptides on SPOT membranes
and deacetylation efficiency of acetyl-lysine containing peptides
in solution for the 11 peptides we analyzed. To further evaluate
our machine learning model, we also plotted the predicted IOD
scores from the machine learning model versus the log kcat/Km

values (Figure 4). This analysis revealed a slightly weaker
correlation for the 11 peptides in the experimentally tested set
(R2 value of 0.30, p = 0.079) but an excellent correlation for all 24
of the peptides we analyzed in vitro (R2 value of 0.59, p < 0.001),
which suggested that the machine learning model is accurate in
predicting deacetylation efficiency for peptides not experimen-
tally tested on the SPOTmembranes. Collectively, these analyses
provided strong evidence that peptide-binding affinity on mem-
branes revealed in the SPOT library binding screens correlated
with deacetylation efficiency in solution.
Substrate Specificity and Mitochondrial Sirtuins. The

combined approach of SPOT library screening and machine
learning analysis revealed several interesting determinants for
efficient SIRT3-catalyzed deacetylation. In general, aromatic
residues (i.e., Phe, Trp, and Tyr) exhibited tight SIRT3 binding.
Another general trend was negatively charged residues (i.e., Asp
and Glu) were disfavored across the entire 9-mer peptide
(Figure 3, top panel). Cysteine residues were generally disfa-
vored, especially C-terminal to the acetyl-lysine residue. This
may be due to negative charge resulting from cysteine deproto-
nation or oxidation to sulfinic/sulfonic acids. Alternatively,
these cysteines may form disulfides between peptides and limit
SIRT3 accessibility within the SPOT membrane. Likewise,
positively charged residues (i.e., Arg and Lys) were correlated
with tight SIRT3 binding. This is consistent with the recently
published SIRT3 structure63 that reveals an overall negative
charge throughout the peptide binding pocket, particularly at

residues C-terminal to acetyl-lysine (Figure 5, Supplemental
Figure S5a).
A previous acetyl-lysine proteomics study revealed that acetyl-

lysine sites are enriched in regions with ordered secondary
structure, in particular R-helical and β-sheet regions.2 Here, we
found that peptides with a high propensity to form R helix or β-
turn structures were disfavored as SIRT3 substrates; however,
peptides with a high propensity to form β-strand structures were
favored overall (Figure 3, bottom panel). In particular, peptides
with a high propensity to form antiparallel-strands were highly
favored whereas parallel-strands were slightly favored. This
observation is highly consistent with all known sirtuin crystal
structures in which acetyl-lysine peptides bind in an extended
antiparallel-strand conformation.35-43 Within the SIRT3 active
site, E296, P297, and L398 of SIRT3 form an antiparallel β strand
with the -2 and -1 position and acetyl-lysine of the substrate
peptide, and E323, V324, and E325 of SIRT3 form an antiparallel
β strand with the þ1, þ2, and þ3 positions of the substrate
peptide (Supplemental Figure S4). In addition, peptide flexibility
was less favored toward SIRT3 binding when compared to β-
strand structures. This finding is in contrast to a previous study
that reported the yeast sirtuin, Hst2, prefers conformationally
flexible substrates within unstructured protein regions.64

In general, acetyl-lysine residues reside in regions with higher
average solvent accessibility than the average of all lysines,1

suggesting that acetyl-lysine residues occur in more exposed
environments. However, our machine learning analysis indicated
that SIRT3 preferentially binds regions with lower accessibility
and higher area-buried scores, reflecting residues that would
prefer to be buried given their inherent chemical nature. It is
important to note that peptides with low accessibility and high
area-buried scores are not necessarily less solvent accessible in
specific proteins. As binding to SIRT3 provides a surface to bury
these residues, this may provide additional binding energy, analo-
gous to the hydrophobic effect in protein folding.65

A recent bioinformatics study by Schwartz et al. analyzed
known acetyl-lysine sites in mammals and found several motifs
that were highly correlated with lysine acetylation.44 Interest-
ingly, several of these motifs were correlated with SIRT3 binding,
indicating that peptides predicted to be SIRT3 substrates are
predicted to be acetylated. The acetylation motifs K(ac)K,
K(ac)R, K(ac)Y, K(ac)XF, and K(ac)XXXK were highly corre-
lated with SIRT3 binding, whereas the acetylation motifs K-
(ac)XXK and K(ac)F were less highly correlated with SIRT3
binding (Figure 3, top panel). The only acetylation motif
negatively correlated with SIRT3 binding was GK(ac); this motif
likely represents nuclear histone acetylation (the GK motif)2,66

and would not be expected to correlate with SIRT3 substrate
specificity in the mitochondria.
Recall that the 229-peptide library has a potential sample bias

as it contains only known acetylated peptides in the mitochon-
dria. To ensure that the observed relationship between the
Schwartz et al. motifs and SIRT3 binding was not an artifact of
over-representation in our training set, we compared the fre-
quency of each motif in the acetylation library, the randomized
library, and the observed frequencies among the full set of
∼22,000 lysine-centered 9-mers in the mitochondrion (the
background set). Only the K(ac)Y motif appeared at a signifi-
cantly higher frequency in the acetylated library than in the
randomized library or the background set (p < 0.05, using
binomial tests with Bonferroni correction, details in Supplemen-
tal Table 1). However, the over-representation of the K(ac)Y

Figure 4. Steady state kinetic validation of acetyl-lysine peptides
selected from SPOT-library screens of SIRT3. Predicted percentile
refers to the relative binding affinity predicted from the learned model
trained on the binding intensities from SPOT library screens (Figure 2).
Blue circles are sequences tested on the SPOT membrane, and red
squares represent sequences that were not tested.
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motif likely does not impact our findings, since (i) the rando-
mized library has virtually the exact same distribution of K(ac)Y
as the full set (p = 1.0), which helps alleviate any bias, and (ii)
other motifs such as K(ac)K and K(ac)R show even stronger
correlation with SIRT3 binding while not being over-repre-
sented.
To separate acetylation motifs by cellular compartment (mito-

chondria, nucleus, and cytoplasm), a more recent acetyl-lysine
proteomics study analyzed separately the relative abundance of
amino acids flanking acetyl-lysine residues2 Interestingly, Choudhary
et al. found that Phe was enriched at the -2 position next to
acetyl-lysine residues in the mitochondria, which matches the
preference of SIRT3 at this position (Figure 3, top panel).
Additionally, Phe and Tyr were enriched at the þ2 position for
acetyl-lysine residues; SIRT3 has a dual preference for positively
charged (i.e., Lys and Arg) in addition to aromatic residues
(i.e., Phe, Tyr, Trp) at this position. Similarly, Tyr is enriched at
theþ1 position next to mitochondrial acetyl-lysine residues, and
SIRT3 prefers Lys and Arg at the þ1 position but possesses a

secondary preference for aromatic residues such as Trp and Tyr.
However, Choudhary et al. found that the residues flanking many
of the identified mitochondrial acetyl-lysine sites are enriched for
negatively charged residues; this is divergent from the prefer-
ences of SIRT3 and suggests that this negatively charged subset
of mitochondrial acetyl-lysine sites may instead be SIRT4 and/or
SIRT5 substrates. Comparing the active sites of SIRT3 and
SIRT4 supports this hypothesis. The peptide binding site in
SIRT3 is negatively charged, whereas the same site in SIRT4 is
positively charged (Supplemental Figure S5). However, the
peptide binding site in SIRT5 is mostly hydrophobic, suggesting
that SIRT3, SIRT4, and SIRT5 possess very distinct protein
substrate preferences.
Although we made a concerted effort to construct and utilize

the SPOT libraries to provide an efficient method for rapidly
screening sirtuin substrate specificity, the ability of this approach
to provide insight into cellular targets is limited to sirtuins
that discriminate potential substrates on the basis of the amino
acid sequence surrounding the acetyl-lysine. To date, the

Figure 5. Models of acetyl-lysine peptides bound in the SIRT3 active site. Stick models of (a) acetyl-CoA synthetase 2 (ACS2), (b) K88 of ornithine
transcarbamoylase (OTC), (c) K230 of the R subunit of ATP synthase, and (d) K498 of the flavoprotein subunit of succinate dehydrogenase docked
into the SIRT3 active site were based on the structure of a thioalkylamidate bound to SIRT3 resulting from the reaction of a thioacetyl-lysine acetyl-CoA
synthetase 2 (ACS2) peptide and NADþ (PDB code 3GLT).63 The enzyme surface shown is prior to energy minimization and colored on the basis of
electrostatic potential with red, blue, and white surface representing negative, positive, and hydrophobic residues, respectively. Modeling was performed
by mutating an acetyl-lysine ACS2 peptide bound to SIRT3 (PDB code 3GLR63) using Pymol,75 and the structure was energy-minimized using
CHARMMing76 using the CHARMM defaults for Shake. Images were generated using Pymol.75
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contribution of interacting surfaces outside the active site be-
tween sirtuins and their substrate targets is completely unknown.
There are no available costructures with native acetylated pro-
teins. Consequently, it is unclear if there are quaternary-structure
contributions to specificity that would not necessarily be revealed
in the SPOT library analysis presented here. In addition, it is
unknown if the induced backbone conformation of the peptide
when present in a whole protein substrate plays a role in substrate
specificity. Furthermore, the overall inaccessibility (i.e., buried
within tertiary structure) of a particular lysine may restrict its
ability to be acetylated by acetyltransferases and subsequently
deacetylated by sirtuins. Therefore, additional information about
lysine accessibility within a protein substrate could help eliminate
unlikely targets that would otherwise be predicted to be excellent
SIRT3 substrates (e.g., lysine sites with high area buried/hydro-
phobicity and low accessibility scores).
Modeling of SIRT3 with Potential Substrates. We next

sought to rationalize our learned model of SIRT3 peptide
substrate specificity in the context of a recently reported SIRT3
crystal structure bound with an acetyl-CoA synthetase 2 (ACS2)
peptide.63 The combined total heights of the residues depicted in
Figure 3, top panel provide insight into the relative importance of
each position to SIRT3 binding. In particular, the -4, -2, þ1,
þ2, and þ3 positions provide the greatest contributions toward
SIRT3 binding. Therefore, we modeled several peptide se-
quences into the SIRT3 peptide binding site, and analyzed the
-2, þ1, and þ2 positions of the peptide for interactions with
SIRT3. The -4 position was not ordered and the side chain
conformation at theþ3 position varied significantly in the SIRT3
structures and therefore we were unable to analyze specific
interactions at these positions. We were unable to reliably model
the side chain conformations at the -1 position due to the
presence of a glycine at this position in the ACS2 peptide that was
used for modeling. However, as mentioned above, our learned
model indicates that the -1 position is not as important in
dictating substrate specificity as the -4, -2, þ1, þ2, and þ3
positions. To explore structural features at these positions, the
ACS2 peptide (Figure 5a) was mutated to three separate
peptides, all of which exhibited tight binding in our SPOT
libraries: K88 of ornithine transcarbamoylase (OTC), K230 of
the R subunit of ATP synthase, and K498 of the flavoprotein
subunit of succinate dehydrogenase. These modeled peptides
were then energy minimized within the SIRT3 structure and
examined for salient interactions. It is important to note that
these models are necessarily qualitative and strongly suggest the
need for further structural work with alternate peptide sequences
bound to SIRT3.
For the OTC peptide, the interactions at two residues were

particularly striking, Phe at the -2 position and Arg at the þ1
position (Figure 5b). Phe was the most highly favored residue at
the-2 position in the machine learning analysis, and Phe docked
into a hydrophobic cavity on the SIRT3 surface defined by P297,
L298, P299, F302, and L303. Arg was the most highly favored
residue at the þ1 position and this Arg modeled close to the
negatively charged E325 on the surface of SIRT3.
The interactions at the þ1 and þ2 position were of interest

for the ATP synthase peptide (Figure 5c). Similar to the OTC
peptide, ATP synthase also contains an Arg at the þ1 position
that may interact with E325 of SIRT3. SIRT3 possesses a
hydrophobic hole near the þ2 position of the peptide defined
by F157, F294, and V324. Phe is the most highly favored
residue at the þ2 position in the learned model (Figure 4a),

and this hole may accommodate hydrophobic residues such
as Phe.
The succinate dehydrogenase peptide also contains two inter-

actions of interest (Figure 5d). Similar to the OTC peptide, the
succinate dehydrogenase peptide contains a hydrophobic Leu
residue at the-2 position (Phe in both OTC and SCHAD) that
may dock in the same hydrophobic cavity. The succinate dehydro-
genase peptide contains an Arg residue at the þ2 position. Arg
is the second most highly favored residue at the þ2 position
(Figure 3a). This Arg may extend beyond the hydrophobic hole
at theþ2 position to instead interact with the negatively charged
E177 or E181. This may explain the dual preference for positively
charged and hydrophobic residues at the þ2 position in the
learned model.
Identifying SIRT3 Substrates. One main extension of this

study is to accelerate the ability to identify sirtuin substrates. In
this section, we will highlight the utility of this method using
several examples. A potential SIRT3 substrate identified from our
SPOT library screens is ornithine transcarbamoylase (OTC).
OTC is a key enzyme in the urea cycle that converts ornithine
and carbamoyl phosphate into citrulline. Lysine 88 of OTC
ranked in the top 8% of the SPOT library screen of known
mitochondrial acetylation sites (Supplemental Table 1). In addi-
tion, our machine learning predictions ranked K88 of OTC first
among the 24 lysines present in the OTC sequence and the top
4% of all mitochondrial peptides (Supplemental Table 2).
Interestingly, a recent study revealed that OTC K88 acetylation
decreases the affinity for carbamoyl phosphate and the maximum
velocity.67 Our SPOT libraries and machine learning analysis
strongly suggested that SIRT3 is the enzyme that deacetylates
K88 of OTC in vivo. Indeed, in a companion study, we demon-
strated in vivo and in vitro that OTC is a bona fide target of SIRT3
and that SIRT3 modulates the urea cycle through direct OTC
deacetylation (manuscript to be submitted).
Other relevant proteins whose corresponding peptides exhib-

ited tight binding to SIRT3 are subunits of ATP synthase and the
electron transport chain (NADH dehydrogenase). Indeed, the
tightest binding peptide in the SPOT library based on known
mitochondrial acetylation sites was from ATP synthase, H1
transporting, mitochondrial F1 complex,R subunit 1 (IINQK(ac)-
RFND) (Supplemental Table 1). Interestingly, both theR and
β subunits of ATP synthase were identified as SIRT3 inter-
acting partners in a recent proteomics screen.68 The authors
also verified the interaction between the R subunit of ATP
synthase and SIRT3 by coimmunoprecipitation, but did not
examine deacetylation. Previous studies have shown that ATP
levels and mitochondrial electron potential are decreased in
the sirt3-/- mouse.14 A potential explanation for these lowered
ATP levels is that hyperacetylation of ATP synthase upon loss
of SIRT3 inhibits ATP synthase and electron transport chain
activity.
Several peptides from enzymes involved in fatty acid oxidation

exhibited tight binding in our SPOT library screens with SIRT3.
Acetylated peptides from short chain L-3-hydroxyacyl-Coenzyme
A dehydrogenase (SCHAD) (K202 in top 6% of known mito-
chondrial acetylation SPOT library and top 3% of all mitochon-
drial peptides in the learned model), very-long-chain acyl-CoA
synthetase (VLACS) (K291 in top 13% of known mitochondrial
acetylation SPOT library), and 3-ketoacyl-Coenzyme A thiolase
(K137 in top 12% of mitochondrial acetylation SPOT library and
top 1% of all mitochondrial peptides in the learned model)
scored highly as potential substrates for SIRT3 deacetylation
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(Supplemental Tables 1 and 2). Consistent with an important
role in β-oxidation, sirt3-/- mice exhibit abnormally high levels
of a number of acylcarnitines (ref 18 and manuscript to be
submitted). Recently, it was reported that long-chain acyl
coenzyme A dehydrogenase (LCAD) is regulated by acetylation
and deacetylation by SIRT3.18

Identifying SIRT3 substrates is paramount to understanding
how reversible acetylation can modulate mitochondrial metabo-
lism, apoptosis, redox, and potentially lifespan extension. This
study provides a compelling insight into possible SIRT3 sub-
strates in the mitochondria. We anticipate that this data set will
be used to discover novel SIRT3 substrates in one of two ways:
(i) A discovery mode where biologists search among previously
cataloged acetylation sites that are functionally uncharacterized
and predicted to be SIRT3 substrates by our machine learning
analysis. This list of potential SIRT3 substrates can be further
narrowed by other factors such as location of the lysine within the
protein (e.g., within the active site of an enzyme ormitochondrial
location sequence that is cleaved upon translocation) or location
of the protein within the mitochondria (SIRT3, SIRT4, and
SIRT5 are present within the mitochondrial matrix). (ii) A
validation mode where a biologist has discovered a potential
SIRT3 substrate, but the site of deacetylation is unknown. In this
case, our learned model would prioritize the lysines as potential
sites of SIRT3-catalyzed deacetylation. In this case, a customized
SPOT library could be constructed containing only sequences
surrounding the lysines within the protein of interest and
tested for SIRT3 binding. Overall, this new approach will
greatly expand the scope and quicken the pace of sirtuin
substrate identification.

’METHODS

General Materials and Methods. SIRT3 and anti-goat-HRP
conjugated antibody were purchased from Abcam (Cambridge, MA,
USA). Fmoc-protected amino acids were purchased from peptide
international (Louisville, KY, USA). All other chemicals used were of
the highest purity commercially available and were purchased from
Sigma (St. Louis, MO, USA), Aldrich (Milwaukee, WI, USA), or Fisher
Scientific (Pittsburgh, PA, USA).Mass spectral analyses were performed
at the University of Wisconsin-Madison Biotechnology Center mass
spectrometry facility.
Sirtuin Expression and Purification. Hst269,70 and SIRT312

was expressed recombinantly in E. coli and purified using Ni-NTA
affinity resin as described. The enzyme concentrations were determined
using the method of Bradford using BSA as the standard.71

SIRT3 Peptide Binding Constants by Fluorescence Ani-
sotropy. SIRT3 (10 μM) was incubated with 20 nM Fluor-ACS2
peptide (see Supplemental Experimental Procedures for synthesis) and
various concentrations of unlabeled acetyl-lysine analogue peptides
ranging from 100 nM to 10 mM in 50 mM Tris-HCl (pH 7.5) and
10% (v/v) glycerol in 100 μL total volume. Fluorescence anisotropy
(mA) was measured at 25 �C using a Panvera Beacon 2000 FP system
with 490 nm excitation and 530 nm emission wavelengths. Anisotropy
values at each competitor peptide concentration were converted to
fraction Fluor-ACS2 bound (FSB) using 1eq 1:

FSB ¼ AOBS-AF

ðAB-AOBSÞQþAOBS-AF
ð1Þ

where AOBS is the measured anisotropy at the particular competitor
peptide concentration, AF is the anisotropy of free Fluor-ACS2, AB is the
anisotropy of the fully SIRT3-bound Fluor-ACS2, and Q is the ratio of
fluorescence intensities of bound and free Fluor-ACS2. IC50 values were

then determined from plots of fraction bound versus competitor peptide
concentration using 2eq 2:

FSB ¼F 0
SB 1-

½peptide�
IC50þ½peptide�

� �
ð2Þ

where FSB
0 is the fraction Fluor-ACS2 bound with no added competitor

peptide, and [peptide] is the concentration of added competitor peptide.
Competitor peptide equilibrium dissociation constants were then
calculated as previously described.72,73

Synthesis of SPOT Library Membranes. The SPOT peptide
libraries were synthesized on an Intavis Respep XL automated peptide
synthesis robot. Libraries were synthesized on commercially available
amino-functionalized cellulose sheets (INTAVIS; K€oln, Germany)
according to the manufacturers protocols using standard Fmoc peptide
synthesis techniques (for general references of SPOT synthesis, see refs
20 and 21). Double coupling was used for the first seven amino acids,
and triple coupling for each subsequent amino acid. Thiotrifluoroacetyl-
lysine was added to peptides via use of the Fmoc-protected derivative
(Fmoc-Lys(CSCF3)-OH; see Supplemental Methods). Using the Re-
spep XL robot, up to 600 peptides can be synthesized per 10 cm� 15 cm
sheet. After synthesis the side-chain protecting groups were cleaved
using 95% v/v TFA, 0.3% v/v triisopropylsilane, and 4.7% v/v H2O.
Membranes were then washed with dichloromethane (4 � 20 mL),
DMF (2 � 10 mL), water (2 � 10 mL), and ethanol (2 � 10 mL) and
air-dried. Successful synthesis was monitored visually by tryptophan
fluorescence under a UV lamp at 360 nm.
SIRT3 Binding to SPOT Libraries. SPOT library membrane was

incubated overnight at 4 �C with 5% w/v BSA in PBST 0.05%. The
membrane was incubated with 2 μM of SIRT3 in PBS for 1 h and then
with 5% w/v BSA in PBST 0.05% for 30 min. The membrane was then
incubated with a primary rabbit antibody specific for SIRT3 for 1 h in
5% w/v BSA in PBST 0.05%, washed (3 � 5 min with PBST 0.05%),
incubated with a goat anti-rabbit IgG-HRP conjugated secondary anti-
body, washed (3 � 5 min with PBST 0.05%), and developed with
SupersignalWest Dura fromThermo Scientific. Images of the developed
SPOT membranes were captured utilizing Lab Works 4.6 software in a
Epi Chem II Darkroom by UVP, and spot intensity was integrated to
give integrated optical density (IOD) scores.
Machine Learning. A linear regression model was trained using a

least-squares fit to the IOD measurements obtained via SPOT library
screens. In particular, we used a combination of input features that
(i) describe the residues flanking the central lysine and (ii) capture
global properties of the peptide, such as hydrophobicity and secondary
structure information. The induced model provides some insight into
the chemical and structural properties that characterize peptides with
high SIRT3 binding specificity. The model was then used to predict
binding affinity scores for over 22,000 potential SIRT3 binding sites in
the mitochondrial proteome. Full details will be described in a subse-
quent publication (manuscript in preparation).
Solid-Phase Peptide Synthesis of in Vitro Validation Pep-

tides. Acetyl-lysine containing peptides for in vitro validation of our
SPOT libraries were synthesized on a 5 μmol scale on an Intavis Respep
XL automated peptide synthesis robot according to the manufacturers
protocols using standard tBu/Fmoc solid-phase peptide synthesis
techniques. Acetyl-lysine was added to peptides via Fmoc-Lys-
(COCH3)-OH. The protecting groups used were Boc for lysine and
tryptophan, tert-butyl for serine and threonine, Pbf for arginine, Trt for
cysteine, and tBu for glutamine, asparagine, glutamate, aspartate, and
tyrosine. After completion of the synthesis, the resin was rinsed with
dichloromethane and dried. The full-length peptide was then depro-
tected and cleaved from the resin with 95% v/v TFA, 0.3% v/v
triisopropylsilane, and 4.7% v/v H2O. The peptide was precipitated
with cold ethyl ether and sedimented by centrifuge washing twice with
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additional cold ethyl ether. The precipitate was dried, redissolved in
water, and lyophilized.Masses of the cleaved peptides were confirmed by
MALDI-TOF mass spectrometry. Crude peptides were purified by
semipreparative RP-HPLC on a C18 small pore column (Grace Vydac,
10 mm � 250 mm, 10 μm) eluting with a gradient of 0-100% aceto-
nitrile with 0.02% TFA in water with 0.05% TFA. Fractions collected
were lyophilized to yield final peptides as dry white powders.
Determination of Peptide Concentrations. Acetyl-lysine

peptide concentrations were determined from the change in NADH
absorbance at 340 nm using sirtuin enzyme-coupled assays.60 Typical
assay mixtures contained ∼100 μM acetyl-lysine peptide, 0.2 mM
NADþ, 0.2 mM NADH, 1 mM DTT, 3.3 mM R-ketoglutarate, 1 μM
MBP-PncA (nicotinamidase), 3 units of glutamate dehydrogenase from
bovine liver, and∼1 μMHst2 in 20mMpotassium phosphate at pH 7.5.
Reactions were run to completion, and the peptide concentration was
calculated from the change in NADH absorbance using an extinction
coefficient of 6.22 mM-1 cm-1 and a path length of 0.9 cm for 300 μL
reactions. Concentrations of peptides containing tyrosine and/or tryp-
tophan were independently determined using calculated extinction
coefficients at 280 nm as described previously.74 These two methods
routinely gave peptide concentrations within 20% of each other.
Determination of SIRT3 Kinetic Parameters. The kcat andKm

values for different acetyl-lysine containing peptides were determined
using a previously described sirtuin enzyme-coupled assay.60 Typical
assay mixtures contained 10-600 μM acetyl-lysine peptide, 600 μM
NADþ, 0.2 mM NADH, 1 mM DTT, 3.3 mM R-ketoglutarate, 1 μM
MBP-PncA (nicotinamidase), 3 units of glutamate dehydrogenase from
bovine liver, and 0.5-1 μM SIRT3 in 20 mM potassium phosphate at
pH 7.5. Reactions were carried out in a final volume of 300 μL per well in
a clear, flat-bottomed, 96-well plate. All assay components except SIRT3
were preincubated at 25 �C until absorbance at 340 nm stabilized, and
the reaction was initiated by the addition of SIRT3. The rates were
analyzed continuously by measuring NADH consumption at 340 nm
and were determined from the slopes of the initial linear portion of each
curve up to 20% conversion using a path length of 0.9 cm. The
background rates of reactions lacking SIRT3 resulting from the sponta-
neous formation of nicotinamide or ammonia were subtracted from the
initial velocities of the SIRT3-catalyzed reactions. The platereader used
for our assay possessed a resolution of 0.001, which corresponds to a
detection limit of ∼0.2 μM.
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